

EXperiments Along Coexistence near Tricriticality

Melora Larson ^a, Norbert Mulders ^b, Al Nash ^a, and Masoud Mohazzab ^b

^a Jet Propulsion Laboratory, California Institute of Technology
^b University of Delaware

Work supported by NASA/MRD

Helium Mixture Phase Diagram

Why Study the Tricritical Point

- Tricritical points are model systems with 2 control parameters
- Theoretical predictions are exact for 3D tricritical points
 - predict integer fractions for the critical exponents
 - Predict logarithmic corrections to the power laws
- Existing experimental measurements not as accurate as at critical points
- Significant new technology available since previous work, 15-20 years ago
 - Higher resolution/stability thermometry
 - Improved second sound detectors

Experimental Objectives

 Second sound measurements along the coexistence curve

$$\rho_{s}/\rho = \kappa_{\sigma} \, \epsilon_{t}^{\zeta_{\sigma}} \, | \ln \epsilon_{t}|^{y}$$

$$\zeta_{\sigma} = 1, \, y = 1$$

- Shape of the phase boundaries
 - power laws (exponents of 1)
 with logarithmic corrections

Limitations Imposed by Gravity

- Concentration susceptibility diverges at tricritical point
 - small cell
- $\xi_0(X)$ diverges at tricritical point
 - large cell

Gravity Effects: Concentration versus reduced T

Other Complications

- The superfluid density is very small
 - Large counter flow velocities
 - Small second sound signals
 - Finite size effects become strong
- Long relaxation times
- Combined with gravity effects, sets experimental procedure
 - Thin flat cell
 - Pulsed time of flight second sound measurements

Experimental Cell

Second Sound Detection

- Superconducting transition edge bolometers
 - Very thin films of tantalum
 - Reproducible properties
 - Transition can be shifted by magnetic field
 - High sensitivity

Tantalum superconducting edge bolometer

Non-Linear Second Sound

- Even at moderate distances to tricritical point
 - Second sound is very non-linear
 - Formation of shock tails
 - Large heat pulses
 - Saturation of second sound signal
 - » Previously seen in bulk helium-4, very close to T_{λ}
 - Signals sensitive to bolometer power dissipation
 - Heat flush effect decreases ³He around bolometer
 - Speed of second sound increases
 - Large enough bolometer powers
 - » Signal splits
 - » One path through ³He depleted region
 - » Other path through unaffected regions

Non-linear Saturation Effects

• Pure ⁴He

 $- T_{\lambda} - T = 10 \mu K$

- heat pulse: 0.28ms

- Heat flux from: 0.058 to

7.77 mW/cm²

• ${}^{3}\text{He-}{}^{4}\text{He Mixture} (X_{3}=0.66)$

 $- T_{\lambda} - T = 2.5 \text{mK}$

- heat pulse: 10, 15, & 20 μs

- Heat flux: 64 mW/cm²

Bolometer Power Effect

Second Sound Approaching the Tricritical Point

Summary: Superfluid Density

- Ground based measurements will improve existing data by over one decade in reduced temperature
- Flight measurements will extend data another decade
- Will be able to distinguish logarithmic corrections from corrections to scaling

JPL Jet Propulsion Laboratory California Institute of Technology

Conclusions and Plans

- Tricritical point is a rich area of study
- Tricritical behavior provides rigorous test of exact theoretical predictions of RG
- Modern technology can be applied to reach the fundamental measurement limits
- Refine the data reduction and analysis
 - Include the non-linear effects
- Finish the JPL sub-Kelvin facility
 - Technology development
 - Second science probe
- Refine the flight parameters

